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Abstract

This Online Appendix contains the following items. First, in Appendix
we discuss basic properties of fragments that the main text refers to. Sec-
ond, in Appendix 13, we provide all proofs omitted from the main text.
Third, Appendix C includes simulation results for dynamics where, at each
step, a randomly-chosen agent selects her most preferred blocking part-
ner. Fourth, in Appendix ), we present results and techniques related to
probabilistic aspects of fragments. Fifth, Appendix I' examines additional
classes of natural dynamics beyond those discussed in the paper. Sixth, Ap-
pendix [ presents two examples, mentioned in the main text, that quantify

and compare the fragility of different stable matchings.

?



A. PROPERTIES OF FRAGMENTS

In this section, we provide more details behind the properties of fragments and induced

matchings stated in Section 3.1 of the main text.

Example 3. The example shows that a fragment may be induced by multiple matchings.

Consider the following market with three firms and three workers:

w3
1,1
1,2
f3\3,1 2,1 1,3

Firms F = {f, fo} and workers W = {w;, w,} form a fragment that can be induced by

either
wy; w2 w1 W2

| |
= (f1, f2) or fy=(fs f1) A

Lemma | shows that for any matching inducing a fragment, there exists a stable matching

in the original market that coincides with the inducing matching over the fragment.

Lemma 4. Consider any matching fi that induces fragment (F,W). Then, there exists a

stable matching p for the original market that agrees with fi when restricted to F U W.

Proof. The submarket obtained from the original market by removing the given fragment
has a stable matching. Any such stable matching merged with the inducing matching con-

stitutes a stable matching in the original market, as desired. &

Nonetheless, a stable matching in the original market may disagree over a fragment with
all matchings that induce the fragment. Indeed, in Example 2 from the main text, the

worker-optimal stable matching puy, disagrees with the unique inducing matching z.

Section 3.1 of the main text shows that a sequence of top-top match pairs forms a trivial

fragment. Example /| presents a trivial fragment that does not correspond to such a sequence.

!This lemma implies that only “projections” of stable matchings in the original market might potentially
induce fragments.



Example 4. The example shows that trivial fragments are not limited to sequences of top-top
match pairs.

Consider the following market with four firms and four workers:

w1 W3
2.4 3,2

]33 2,1 43 1,1

14,1 32 1,4 22
2,2 3,1

It has two stable matchings:

pr = (f3, fa, fo, f1)  and  py = (fo, fa, f3, f1)-

Since both stable matchings agree with the matching

Wo Wy
|
la - (f47 fl)
that induces fragment (F, W) = ({f1, fa}, {wa, w4}), the considered fragment is trivial. How-
ever, there are no top-top matches in this market. A

B. OMITTED PROOFS

Lemma 5. Consider the random walk {S;}i>o defined in the proof of Proposition 1 from the
main text. For small enough ¢ > 0, the number of steps this random walk takes to first reach
S; > n is 290 with probability 1 — 27,

Proof. The proof of this lemma follows from standard Chernoff bound arguments and is

similar to ( ).

Multiplicative Chernoff Bound (e.g., Theorem 4.1 in ) ).
Let {X;}icp be independent Poisson trials such that, for i € [n], Pr[X; = 1] = p;, where
0 <p; <1. Then, for X =>7"  X; and any v > 0,
o E[X]
Pr[X > (1+9)E[X]] < {m} .
For simplicity, consider another random walk {7}};>¢, on the set {0,1,2,...}, which we
describe below. This new random walk starts at 75 = 0. When T; = 0 for some ¢ > 0,

including starting ¢ = 0, the random walk deterministically moves four units to the right,



T;11 =T; + 4. If instead T; > 0, the random walk moves one unit to the left, T;,,; =T, — 1,

with probability
__n=¢
n+ (2 —1)¢

and four units to the right, T;,; = T; + 4, with the remaining probability ps« =1 — pg« — 0

D+ —las(—0,

as ¢ — 0. The number of steps it takes for the original random walk {S;};>¢ to first reach
S; > n is identical to the number of steps it takes for the new random walk {7}};>0 to first
reach T; > n — [(1 — {)n]. Henceforth, we examine the latter number.

If the random walk is at position 7; > n — [(1 — {)n] after i steps, then for some
Jj<i—(n—[(1-¢)n])/4, the following event F; ; must occur:

T,>n—[(1—Cn], T;=0, and Vke{j+1,j+2,...,i—1}, Ty >0.

Let R;; denote the number of times the random walk increases its position by four and L; ;
denote the number of times the random walk decreases its position by one during the steps
Jj+1,7+2,...,i. When the event F;; occurs, we must have 4R, ; — L; ; > n — [(1 — {)n].
This inequality is equivalent to 5R;; > n— [(1 —()n] +4 — j since L; ; + R; ; = i — j. This,

in turn, implies that

t—7 n+2rk—=1)¢ . o 2k¢ o
R, ;> g = (10/<¢§ ) XE[R; ;] since E[R; ;] = psx(i—j) = T X (i—7).
Therefore,
— (8 1
PrlFy] £ PrlRy 2 (L+9) BIR,)J, where 5= 1=K

Furthermore, for small enough ¢ > 0, we must have large enough v > 0, so that
eV
e <
In addition, E[R; ;] = Q(n). Indeed, E[R; ;] = ps« X (i — j) and the event F; ; can only occur
if i —j = Q(n). Consequently, by the multiplicative Chernoff bound,
Pr[F;;] <Pr[Ri; > (1+7) xE[R;;]] <27 for some ¢ > 0.

Finally, we apply the standard union bound trick to upper-bound the probability that
the random walk {7}};>o reaches n — [(1 — {)n| within the first 7 steps:

Pr[F;; occurs for some i,j < 7] < 72 x 27"

Consequently, for, say, 7 = 2¢"/3, the probability that the random walk reaches n— [(1—()n]
during the first 7 steps, is bounded from above by 2-¢*/3. This concludes the proof. §



Lemma 6. There exists a sequence of markets for which Proposition 1, which is stated in
the main text, holds. That is, the conditions (i) and (i1) in its statement define a non-empty

class (of sequences) of markets.
Proof. For simplicity of exposition, consider the following two markets, one of odd size
n =5 on the left and another of even size n = 6 on the right:

w1y Wy W3 W4 Ws We
w; w2 W3 W4 Wh

4,6 1,1
fif45 1,1 i
f 1.4 f2 175
2 )
1,4
f| 1.3 and oL
f 1.9 f4 1a3
4 3
1,2
f\1,1 2,1 3,1 4,1 53 fs

f\1L1 21 3,1 4,1 51 6,4

It is straightforward to generalize these two instances—by replacing the highest payoff with
n, the second-highest payoff with n — 1, and so forth—to construct a sequence of markets of
any size, odd or even; the precise preferences are omitted for brevity.

For any market in this sequence, including the markets shown above, there is a unique
stable matching u(f;) = w;, for any i € [n]. Furthermore, any firm f # f, is preferred by
[n/2] — 1 workers to their stable partners and any worker w # w is preferred by |n/2| —1
firms to their stable partners. In other words, any agent except the “exclusion” agents f,, and
wy is preferred by approximately half of agents from the other side to their stable partners.

Therefore, Proposition 1 holds for the constructed sequence of markets, as desired. 1

C. ADDITIONAL FIGURES

In this section, we present Figures H-7, analogous to Figures 2-4 in the main text, for the
random (best) dynamics where, at each step, a random agent selects her most preferred
blocking partner. Specifically, at each step of the dynamics, one agent is chosen uniformly
at random from those who have at least one blocking partner. The next matching is then
obtained by pairing this chosen agent with her most preferred blocking partner; this cor-
responds to satisfying the chosen agent’s best blocking pair. Similar to the main text, we
sample 1,000 random markets for each market size and simulate 300 paths to stability for
each minimally perturbed stable matching. As can be seen, all of the insights presented in

the main text carry over to these dynamics as well.
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D. PROBABILISTIC ASPECTS OF FRAGMENTS

In this section, we focus on random matching markets, of size n, wherein each agent has
complete preferences drawn uniformly and independently at random. We first show that
in such markets, with high probability, there are no large fragments at all, including trivial
ones. Then, we discuss techniques, in the spirit of ( )-type integral formulas, that
may be potentially useful for the future analysis of fragments in random markets; see
( ) and references therein for recent applications of similar techniques and their history.
The challenge of estimating the likelihood of fragments is not surprising, given that
related problems are known to be complex and remain open. Specifically, Lemma 1 in the
main text implies that firms and workers forming a fragment belong to a so-called “closed
clique,” as defined in the final remark of ( ): in every stable
matching, these agents are matched with each other only. In this remark,
( )—who analyze the average number of firm-worker pairs common to all stable
matchings—argue that even estimating the probability that some two firms and two workers

form such a clique is a hard problem (not yet solved).
Proposition 2. There are no fragments of sizes k > 0.9n with high probability.

Proof. In what follows, we use an equivalent cardinal representation of ordinal markets
with uniformly random preferences. Let U/ = {Uzé}i’je[n] and U" = {U}}}i jein) denote the
match utilities for firms {f;}icp and workers {w;};epn), respectively, with all entries drawn
randomly and independently from the uniform distribution UJ0, 1].

We employ a union bound to establish the proposition. There are fewer than n ways
to choose k < n, a fragment size. Furthermore, for each k, there are at most (Z)2 ways
to choose subsets F' and W of firms F and workers W, respectively, that can potentially
form a fragment of size k. By symmetry, it then suffices to show that for every £ > 0.9n,
the probability that firms F' = {f;};cj and workers W = {w; };ey constitute a fragment is

much smaller than (Z) “p~1. To prove this result, we rely on the following two observations.

k

Observation 1. With probability at least 1 — o <(”) _Zn*1>, there are at most (})n? stable
matchings in the market induced by agents F and W.

Let N, denote the corresponding number of stable matchings. The observation follows

immediately from one-sided Chebyshev’s inequality, where A > 0,

Var X
Pr(X >EX +)\) < — o2
(X 2 ) S VX 122



and the following two asymptotic results, obtained in ( ) and

( ), respectively:
E[N:] = (1+o0(1))e 'kInk,

E[N?] = (14 0(1)) (62 + %eg) EIn®k, k — oo.

Observation 2. With probability at least 1 — o ((Z) _Zn*1>, there are fewer than 0.8n pairs
of fi € F, w; € W, where i, j € [k], such that
v/, > 1—v and Up >1- 3\1/_
Let Z be the number of such pairs. In total, there are k* possible pairs f; € F, w; € W.
Each pair satisfies the above conditions with probability 1/9n. Thus, by the linearity of
expectations, E[Z] = k?/9n. In addition, 9n/100 < E[Z] < n/9 since 0.9n < k < n. Using
the multiplicative Chernoff bound, with v > 0,
o EX
PrX > (1+9)E[X]] < {W} )
we obtain, say,
677 679n/100
Pr[Z > 0.79n] < Pr[Z > (1 + 7)E[Z]] ‘76 < {ﬂ < {ﬂ <1.987".

In contrast, for 0.9n < k < n, using the Stirling approximation, we have

In ((Z>2n> <In (({ognJ)Q") =2ln (Lo.gnj) Y lnn = (1+0(1))2H(0.9)n + Inn,

where H(p) = —plnp — (1 — p)In(1 — p). The observation then follows since e?7(9) < 1.93.

Based on these two observations, with a failure probability of at most o <(Z) _Qn_1>, the
corresponding properties regarding N and Z are both satisfied. Fix any stable matching
i in the market formed by agents F' and W; by Observation 1, there are at most (Z)n2
such matchings. Due to Observation 2, as 0.9n < k < n, this matching contains at least
k —0.8n > 0.1n pairs of f; € F, w; € W, with fi(f;) = w;, such that

U,§_1—% or Uh<1- 3\1/_

If /i induces the fragment (F, W), then every agent inside the fragment must prefer her



partner under i to anyone outside the fragment. The corresponding probability is at most

1 0.1n(n—k)
) _ VAR

(“m

Even after multiplying this probability by at most (Z) n? possibilities to pick i, it still remains
0 ((Z) 72n*1>. This concludes the proof. §

Proposition 2 highlights the rarity of large fragments, whether trivial or non-trivial, in
random markets. We believe that similar arguments may be used to sharpen the result and
show that even (much) smaller fragments are also vanishingly rare.

There are also other tools that can be relevant for examining fragments in random mar-
kets. Below, we describe an approach that may be used to obtain integral formulas for certain
probabilities, which could be of interest and possibly amenable to an asymptotic analysis.
This approach, originating from ( ) and ( ), has proved to be useful for
analyzing random matching markets; see ( ) for additional details.

For illustration, consider arbitrary subsets F' and W of firms F' and workers W, re-
spectively, each of size k < n, and an arbitrary matching iz in the market formed by these
subsets. Let P.(n) denote the probability that i induces the fragment (F, W); by symmetry,
this probability depends only on sizes k and n. Then,

Lemma 7. We have

2k times
Py(n) = / . / (1 — 2y;) H (1 —ap)" " H(l — )" *dedy,
vye[0,1]F i,5€[k]i#£] helk] le[k]
where x = (x1, T2, ..., x) and y = (Y1, Y2, - -, Yk)-

Proof. As in the proof of Proposition 2, we employ a cardinal representation of random
markets. Let U/ = {U{;}me[n] and U" = {U}i jein) be the match utilities for firms {f;}ici)
and workers {w;};ecpm, respectively, with all entries selected randomly and independently
from the uniform distribution U|0, 1].

Due to symmetry, it suffices to consider F' = { f;};ej and W = {w; } jepr) and the matching
it such that ji(f;) = w; for each i € [k]. By definition, i induces the fragment (F, W) if and



only if
f f w w o .
Ui, > U, or Ujj> U Vi,jelkl,i#j
Ui >Ug  Vjelkli>k.
Notably, conditioned on U} = u/ and Uji = uy

¥ )
independent. Consequently, the conditional probability that i induces the fragment (F, W)

I (=== [T () T )

i,J€[k],i#£7 helk] le[k]

with i,j € [k], the above events are

equals

By integrating this expression over the cube [0, 1]2* and switching to new variables z; = 1—u/

and y; = 1 —uf, 4,7 € [k], we obtain the desired integral formula for Py(n).

The obtained integral formula shares some similarities with those recently analyzed in
( ). This serves as a promising sign that the described approach may be valuable
for analyzing fragments in random markets.

Although large fragments, whether trivial or not, are vanishingly rare, non-triviality
appears to play a central role in the rarity of (very) small non-trivial fragments, as suggested
by Figure 1 in the main text. Since each firm-worker pair forms a top-top match with
probability n~2, and there are n? such pairs, top-top match pairs are common in random
markets. In fact, it is easy to show that the number of top-top match pairs is asymptotically
Poisson with parameter 1. Given that top-top match pairs and their sequences are trivial
fragments, this suggests that small trivial fragments are quite common.

In contrast, consider two firms and two workers forming a non-trivial fragment of size
k = 2, the smallest possible size of a non-trivial fragment. There are roughly n* ways to
choose such agents and 2 ways to pick a stable matching for them, which can induce the
fragment. These agents prefer their stable partners to everyone outside the fragment with

4 already matching the number of ways to choose these agents.

a probability of roughly n~
Non-triviality additionally requires that there is no other stable way to match these agents
in the entire market. This additional requirement imposed by non-triviality seems to be the

primary reason for the rarity of small non-trivial fragments in random markets.

10



E. OTHER DYNAMICS

In this section, we explore additional classes of reasonable dynamics beyond those discussed
in the paper. However, none of these new dynamics even ensure convergence to stability,

which is arguably a minimal requirement for viable dynamics.

Proposition 3. Consider a class of dynamics that, at each step, whenever possible, match

multiple (best) blocking pairs.” No dynamics in this class guarantee convergence to stability.

Proof. Initialize the following market
w1 wo ws
fif3,1 22 1,3
fol 1,3 3,1 2,2
f3\2,2 1,3 3,1

at matching A; = (wy, f3, f2), specifying the partners of workers wy, wy, and w3, respectively.

It is easy to verify that every given dynamics generate a cycle, and thus fail to attain
stability. For illustration, in the first step, there are three (best) blocking pairs: (fi,w),
(f1,ws), and (fs3,wp). Consequently, the dynamics necessarily match pairs (f;,ws) and

(f3,wy), leading the market to Ay = (f3, ws, f1):

AN —————— Ao,
(f1,w3),(f3,w1)

where, under the transition arrow, we specify the corresponding blocking pairs.

In fact, the dynamics must follow the deterministic path

A s A A3 = , fr,wg) ——————— Ay = Aq,
! (f1,w3),(f3,w1) 2 (f1,w2),(f2,w1) ° (f2 h 3) (f2,w3),(f3,w2) ! !

returning to the initial matching A\;. &

In addition,

2Formally, at each step i, if the current matching \; is unstable, we tabulate the set of all combinations of
(best) blocking pairs, consisting of at least two pairs, that can match simultaneously. If such combinations
exist, we choose one of them randomly, and the next matching, A;;1, is obtained by matching all blocking
pairs in the chosen combination. Otherwise, if no such combination exists, A;11 is obtained by satisfying
a randomly-chosen (best) blocking pair. Notably, the discussed probabilities can be arbitrary, potentially
non-uniform, time-dependent, or even zero.

11



Proposition 4. Consider a class of dynamics that, at each step, whenever possible, match a
firm-worker pair that are each other’s favorite blocking partner.” No dynamics in this class

guarantee convergence to stability.

Proof. Initialize the market
wy w2 W3 W4 Ws
fil1,3 3,1 54 25 4,1
fol 1,4 2,5 3,3 5,3 4,4
fsl 3,1 2,4 4,2 1,4 5,3
fal 4,2 2,3 3,5 1,1 5,2
fs\2,5 42 51 3,2 1,5

at matching \; = (f5,wa, f1, f2, f3), specifying the partners of workers wy, ws, and so on.
Then, every given dynamics generate a cycle, and hence fail to reach stability. Initially,

there are three blocking pairs: (fi,ws), (f1,ws), and (fs,ws). In addition, (f5,ws) is the

only pair of agents that are each other’s favorite blocking partner. Therefore, the dynamics

must match firm f5 and worker ws, leading the market to Ay = (w1, f5, fi, f2, f3):

)\1 —_— /\2,
(f5,w2)
where under the transition arrow, we specify the satisfied blocking pair.

It is straightforward to check that the dynamics necessarily follow the path

)\1 > )\2 )\3 )\4 /\5 > )\6 > )\7 )\8
(f5,w2) (f1,wa) (f2,ws) (fa,w1) (f1,w3) (f3,w2) (f2,w4) (f5,w1)

A > )\10 > )\11 = )\1,

Fsawn) " (Faaws) (Faws)

returning to the initial matching A;.

In what follows, we focus on cardinal markets, with match utilities denoted as U =
f
ij
w; and w;; is worker w;’s utility from matching with firm f;. The sum of these utilities,

u{] + u3}, is the total surplus. Without loss of generality, all utilities from being unmatched

are normalized to zero. As in the main paper, all preferences are strict, and all worker-firm

{u{j,ug ijeln]- For each pair (f;,w;), wj; is firm f;’s utility from matching with worker

. . f w .
pairs are mutually acceptable, i.e., u;; > 0 and w;; > 0 for all 4, j. Then,

3Specifically, at each step i, if the current matching )\; is unstable, we tabulate the set of blocking pairs
of agents that are each other’s favorite blocking partner. If such blocking pairs exist, we choose one of them
randomly, and the next matching, A;11, is obtained by satisfying the chosen pair. Otherwise, if no such
pair exists, A;+1 is obtained by satisfying a randomly-chosen blocking pair, as usual. The probability that a
specific blocking pair is selected to match can be arbitrary.

12



Proposition 5. Consider a class of dynamics that, at each step, match a blocking pair having

the highest total surplus.” No dynamaics in this class guarantee convergence to stability.

Proof. Initialize the cardinal market
wy Wy wz Wy
fif11,1 9,7 83 6,5
fo| 4,4 3,6 2,8 9,3
fs1 1,8 2,5 85 3,9
fi\ 43 6,8 91 74

at matching Ay = (wy, f1, f3, f2), which specify the partners of workers w;, wy, and so forth.
The dynamics generate a cycle, and thus fail to attain stability. In the first step, there
are three blocking pairs: (fi,w;) with a total surplus of 12 = 11 + 1, (f,w,) with a total
surplus of 11 = 6 + 5, and (f4,ws) with a total surplus of 11 = 7 + 4. Consequently, the
dynamics match firm f; and worker w; and lead the market to Ay = (f1, fu, f3, f2):

)\1 —_— /\2.
(f1,w1)

The dynamics then follow the path

A1 Ao )\3 > A4 % )\5 > )\6 )\7 >\8 > )\9 = )\1,
(f1,w1) (fa,wa) (f2,w3) (f3,wa) (fa,w2) (f2,w1) (f3,w3) (f2,wa)

eventually returning to the initial matching A;.

Obviously, the same result can be obtained for dynamics that, at each step, match a
blocking pair having the highest weighted total surplus; this can be achieved by appropriately
scaling the match utilities used in the proof of the above proposition. We also expect similar
results for other related dynamics; particularly, for dynamics that, at each step, match a

blocking pair having the highest total surplus gain, compared to the previous match.

4These dynamics are deterministic at all steps when there is one blocking pair that delivers the highest
total surplus. If, at some step, there are multiple such pairs, we choose one of them randomly, and the next
matching is obtained by satisfying the chosen pair.

13



F. FRrRAGILITY EXAMPLES

Example 5. The example presents a market in which one of the two stable matchings is
fragile with respect to arbitrary perturbations.

Consider the following market with six firms and six workers:

wq % w3 Wge W5 We

£ 3,1 2,6 52 1,6
£ | 3.6 2,4 6,3 1,5
fs 3,3 4,1 2,4 1,3
il 1,1 4,2 3,1 2,2
f1 3.4 26 1,6 52

f\1,3 24 3,5 4,5

There are two stable matchings:

= (f1, fo, f3, fa, f5, f6) and = (f3, f1, [, f6, [, [5).

Furthermore, each agent has two different stable partners.
By using the Markov structure of the problem with states being matchings, we calculate

return probabilities

stable \ unmatch w1 Wy W3 Wy Ws We
0.3108 | 0.2657 | 0.2706 | 0.2769 | 0.2689 | 0.2362
0.9883 | 0.9810 | 0.9886 | 0.9825 | 0.9801 | 0.9819

for each almost stable matching, obtained by unmatching worker w; with his stable partner.

These return probabilities imply that the firm-optimal stable matching p is fragile with
respect to arbitrary perturbations. Indeed, each of its almost stable matchings is more likely
to converge to the worker-optimal stable matching py,. In fact, irrespective of how close
we start to pp, in order to return back, decentralized interactions need to attain one of its
almost stable matchings, and thus are more likely to attain py; instead. In that sense, almost
stable matchings corresponding to minimal perturbations provide lower bounds on fragility.

In contrast, the worker-optimal stable matching py;, seems robust. Even though, when
perturbed minimally, it can still converge to pj, this is very unlikely. Interestingly, robust

stable matching py, is more egalitarian than fragile stable matching 5. A

°In our simulations, more egalitarian stable matchings seem to be more robust on average. Nevertheless,

14



Example 6. The example presents a market in which all stable matchings are fragile and
extremal stable matchings are most fragile.

Consider the following market with six firms and six workers:

wq Wy W3 W4 W5 Wg

f 3.4 2,5 1,6
£ 1,6 3.4 2,5
125 1,6 3,4
13,4 25 1,6

s 3.4 2,5 1,6

s 3,4 2,5 1,6

It has six stable matchings:

= (f17f27f37f47f57f6)7 My = (f47f57f67f17f27f3)7
= (fo, f1s f2, f3 fas f5), ps = (f3, fa, f5: fo: f1s f2),
= (f5, fo, f1, f2, [, fa), e = pw = (fo, f3, fa, f5, fo, f1)-

Each stable matching corresponds to one of the six “diagonals” in the matrix.

By using the Markov structure, we compute exact values for return probabilities

stable \ unmatch w;, any i
0.2010
0.3165
0.5035
ty = (fa, f5, fo, f1, f2, f3) 0.5035
s = (f3, f1, f5, fo, f1, f2) 0.3165
t = (fo, f3, far f5, f6, f1) | 0.2010

for each almost stable matching. In fact, due to symmetry, it suffices to calculate only three
return probabilities.

In this market, every stable matching appears to be fragile. Notably, extremal stable
matchings are most fragile. Conversely, more egalitarian stable matchings are less fragile;

this observation is similar to Example 5. A

in certain markets, the most egalitarian stable matching may not necessarily be the most robust one; see
( ) for a slightly related observation.
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