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Abstract

This Online Appendix contains the following items. First, in Appendix A,
we discuss basic properties of fragments that the main text refers to. Sec-
ond, in Appendix B, we provide all proofs omitted from the main text.
Third, Appendix C includes simulation results for dynamics where, at each
step, a randomly-chosen agent selects her most preferred blocking part-
ner. Fourth, in Appendix D, we present results and techniques related to
probabilistic aspects of fragments. Fifth, Appendix E examines additional
classes of natural dynamics beyond those discussed in the paper. Sixth, Ap-
pendix F presents two examples, mentioned in the main text, that quantify
and compare the fragility of different stable matchings.



A. Properties of Fragments

In this section, we provide more details behind the properties of fragments and induced
matchings stated in Section 3.1 of the main text.

Example 3. The example shows that a fragment may be induced by multiple matchings.
Consider the following market with three firms and three workers:


w1 w2 w3

f1 3, 2 2, 3 1, 1

f2 2, 3 3, 2 1, 2

f3 3, 1 2, 1 1, 3

.

Firms F̄ = {f1, f2} and workers W̄ = {w1, w2} form a fragment that can be induced by
either

µ̄1 = (,f1,
|
w1

,f2,
|
w2

) or µ̄2 = (,f2,
|
w1

,f1,
|
w2

). △

Lemma 4 shows that for any matching inducing a fragment, there exists a stable matching
in the original market that coincides with the inducing matching over the fragment.

Lemma 4. Consider any matching µ̄ that induces fragment (F̄ , W̄ ). Then, there exists a
stable matching µ for the original market that agrees with µ̄ when restricted to F̄ ∪ W̄ .1

Proof. The submarket obtained from the original market by removing the given fragment
has a stable matching. Any such stable matching merged with the inducing matching con-
stitutes a stable matching in the original market, as desired.

Nonetheless, a stable matching in the original market may disagree over a fragment with
all matchings that induce the fragment. Indeed, in Example 2 from the main text, the
worker-optimal stable matching µW disagrees with the unique inducing matching µ̄.

Section 3.1 of the main text shows that a sequence of top-top match pairs forms a trivial
fragment. Example 4 presents a trivial fragment that does not correspond to such a sequence.

1This lemma implies that only “projections” of stable matchings in the original market might potentially
induce fragments.
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Example 4. The example shows that trivial fragments are not limited to sequences of top-top
match pairs.

Consider the following market with four firms and four workers:



w1 w2 w3 w4

f1 2, 4 1, 4 3, 2 4,3

f2 3, 3 2, 1 4, 3 1, 1

f3 4, 1 3, 2 1, 4 2, 2

f4 2, 2 4,3 3, 1 1, 4

.

It has two stable matchings:

µF = (f3, f4, f2, f1) and µW = (f2, f4, f3, f1).

Since both stable matchings agree with the matching

µ̄ = (,f4,
|
w2

,f1,
|
w4

)

that induces fragment (F̄ , W̄ ) = ({f1, f4}, {w2, w4}), the considered fragment is trivial. How-
ever, there are no top-top matches in this market. △

B. Omitted Proofs

Lemma 5. Consider the random walk {Si}i≥0 defined in the proof of Proposition 1 from the
main text. For small enough ζ > 0, the number of steps this random walk takes to first reach
Si ≥ n is 2Ω(n) with probability 1− 2−Ω(n).

Proof. The proof of this lemma follows from standard Chernoff bound arguments and is
similar to Ackermann et al. (2011).

Multiplicative Chernoff Bound (e.g., Theorem 4.1 in Motwani and Raghavan, 1995).
Let {Xi}i∈[n] be independent Poisson trials such that, for i ∈ [n], Pr[Xi = 1] = pi, where
0 < pi < 1. Then, for X =

∑n
i=1 Xi and any γ > 0,

Pr
[
X ≥ (1 + γ)E[X]

]
≤
[

eγ

(1 + γ)(1+γ)

]E[X]

.

For simplicity, consider another random walk {Ti}i≥0, on the set {0, 1, 2, . . .}, which we
describe below. This new random walk starts at T0 = 0. When Ti = 0 for some i ≥ 0,
including starting i = 0, the random walk deterministically moves four units to the right,
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Ti+1 = Ti + 4. If instead Ti > 0, the random walk moves one unit to the left, Ti+1 = Ti − 1,
with probability

pd⋆ =
η − ζ

η + (2κ− 1)ζ
→ 1 as ζ → 0,

and four units to the right, Ti+1 = Ti + 4, with the remaining probability ps⋆ = 1− pd⋆ → 0

as ζ → 0. The number of steps it takes for the original random walk {Si}i≥0 to first reach
Si ≥ n is identical to the number of steps it takes for the new random walk {Ti}i≥0 to first
reach Ti ≥ n− ⌈(1− ζ)n⌉. Henceforth, we examine the latter number.

If the random walk is at position Ti ≥ n − ⌈(1 − ζ)n⌉ after i steps, then for some
j ≤ i− (n− ⌈(1− ζ)n⌉)/4, the following event Fi,j must occur:

Ti ≥ n− ⌈(1− ζ)n⌉, Tj = 0, and ∀k ∈ {j + 1, j + 2, . . . , i− 1}, Tk > 0.

Let Ri,j denote the number of times the random walk increases its position by four and Li,j

denote the number of times the random walk decreases its position by one during the steps
j + 1, j + 2, . . . , i. When the event Fi,j occurs, we must have 4Ri,j − Li,j ≥ n− ⌈(1− ζ)n⌉.
This inequality is equivalent to 5Ri,j ≥ n− ⌈(1− ζ)n⌉+ i− j since Li,j +Ri,j = i− j. This,
in turn, implies that

Ri,j ≥
i− j

5
=

η + (2κ− 1)ζ

10κζ
×E[Ri,j] since E[Ri,j] = ps⋆×(i−j) =

2κζ

η + (2κ− 1)ζ
×(i−j).

Therefore,

Pr[Fi,j] ≤ Pr
[
Ri,j ≥ (1 + γ)× E[Ri,j]

]
, where γ ≡ η − (8κ+ 1)ζ

10κζ
.

Furthermore, for small enough ζ > 0, we must have large enough γ > 0, so that
eγ

(1 + γ)(1+γ)
< 1.

In addition, E[Ri,j] = Ω(n). Indeed, E[Ri,j] = ps⋆ × (i− j) and the event Fi,j can only occur
if i− j = Ω(n). Consequently, by the multiplicative Chernoff bound,

Pr[Fi,j] ≤ Pr
[
Ri,j ≥ (1 + γ)× E[Ri,j]

]
≤ 2−cn for some c > 0.

Finally, we apply the standard union bound trick to upper-bound the probability that
the random walk {Ti}i≥0 reaches n− ⌈(1− ζ)n⌉ within the first τ steps:

Pr[Fi,j occurs for some i, j ≤ τ ] ≤ τ 2 × 2−cn.

Consequently, for, say, τ = 2cn/3, the probability that the random walk reaches n−⌈(1−ζ)n⌉
during the first τ steps, is bounded from above by 2−cn/3. This concludes the proof.
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Lemma 6. There exists a sequence of markets for which Proposition 1, which is stated in
the main text, holds. That is, the conditions (i) and (ii) in its statement define a non-empty
class (of sequences) of markets.

Proof. For simplicity of exposition, consider the following two markets, one of odd size
n = 5 on the left and another of even size n = 6 on the right:



w1 w2 w3 w4 w5

f1 4, 5 3, 4 2, 5 5, 2 1, 1

f2 1, 4 4, 3 3, 4 2, 5 5, 2

f3 1, 3 5, 2 4, 3 3, 4 2, 5

f4 1, 2 2, 5 5, 2 4, 3 3, 4

f5 1, 1 2, 1 3, 1 4, 1 5, 3

 and



w1 w2 w3 w4 w5 w6

f1 4, 6 3, 5 2, 6 6, 2 5, 3 1, 1

f2 1, 5 4, 4 3, 5 2, 6 6, 2 5, 3

f3 1, 4 5, 3 4, 4 3, 5 2, 6 6, 2

f4 1, 3 6, 2 5, 3 4, 4 3, 5 2, 6

f5 1, 2 2, 6 6, 2 5, 3 4, 4 3, 5

f6 1, 1 2, 1 3, 1 4, 1 5, 1 6, 4


.

It is straightforward to generalize these two instances—by replacing the highest payoff with
n, the second-highest payoff with n− 1, and so forth—to construct a sequence of markets of
any size, odd or even; the precise preferences are omitted for brevity.

For any market in this sequence, including the markets shown above, there is a unique
stable matching µ(fi) = wi, for any i ∈ [n]. Furthermore, any firm f ̸= fn is preferred by
⌈n/2⌉ − 1 workers to their stable partners and any worker w ̸= w1 is preferred by ⌊n/2⌋ − 1

firms to their stable partners. In other words, any agent except the “exclusion” agents fn and
w1 is preferred by approximately half of agents from the other side to their stable partners.
Therefore, Proposition 1 holds for the constructed sequence of markets, as desired.

C. Additional Figures

In this section, we present Figures 5-7, analogous to Figures 2-4 in the main text, for the
random (best) dynamics where, at each step, a random agent selects her most preferred
blocking partner. Specifically, at each step of the dynamics, one agent is chosen uniformly
at random from those who have at least one blocking partner. The next matching is then
obtained by pairing this chosen agent with her most preferred blocking partner; this cor-
responds to satisfying the chosen agent’s best blocking pair. Similar to the main text, we
sample 1,000 random markets for each market size and simulate 300 paths to stability for
each minimally perturbed stable matching. As can be seen, all of the insights presented in
the main text carry over to these dynamics as well.
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(a) Return probability (b) Proportion of mismatched
firms/workers in ultimate stable

matching

(c) Time to stability (d) ln [Time to stability]

(e) On-path average proportion of
mismatched firms/workers

Figure 5: Random n× n markets with multiple stable matchings
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(a) Time to stability (b) ln [Time to stability]

(c) On-path average proportion
of mismatched firms

(d) On-path average proportion
of mismatched workers

Figure 6: Random n× (n+ k) markets with a unique stable matching, k ∈ {0, 1, 2, 3}

(a) Time to stability (b) ln [Time to stability]

(c) On-path average proportion
of mismatched firms

(d) On-path average proportion
of mismatched workers

Figure 7: Random n× 2n markets with a unique stable matching
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D. Probabilistic Aspects of Fragments

In this section, we focus on random matching markets, of size n, wherein each agent has
complete preferences drawn uniformly and independently at random. We first show that
in such markets, with high probability, there are no large fragments at all, including trivial
ones. Then, we discuss techniques, in the spirit of Knuth (1976)-type integral formulas, that
may be potentially useful for the future analysis of fragments in random markets; see Pittel
(2019) and references therein for recent applications of similar techniques and their history.

The challenge of estimating the likelihood of fragments is not surprising, given that
related problems are known to be complex and remain open. Specifically, Lemma 1 in the
main text implies that firms and workers forming a fragment belong to a so-called “closed
clique,” as defined in the final remark of Pittel, Shepp, and Veklerov (2008): in every stable
matching, these agents are matched with each other only. In this remark, Pittel, Shepp, and
Veklerov (2008)—who analyze the average number of firm-worker pairs common to all stable
matchings—argue that even estimating the probability that some two firms and two workers
form such a clique is a hard problem (not yet solved).

Proposition 2. There are no fragments of sizes k ≥ 0.9n with high probability.

Proof. In what follows, we use an equivalent cardinal representation of ordinal markets
with uniformly random preferences. Let U f = {U f

ij}i,j∈[n] and Uw = {Uw
ij}i,j∈[n] denote the

match utilities for firms {fi}i∈[n] and workers {wj}j∈[n], respectively, with all entries drawn
randomly and independently from the uniform distribution U [0, 1].

We employ a union bound to establish the proposition. There are fewer than n ways
to choose k < n, a fragment size. Furthermore, for each k, there are at most

(
n
k

)2 ways
to choose subsets F̄ and W̄ of firms F and workers W , respectively, that can potentially
form a fragment of size k. By symmetry, it then suffices to show that for every k ≥ 0.9n,
the probability that firms F̄ = {fi}i∈[k] and workers W̄ = {wj}j∈[k] constitute a fragment is
much smaller than

(
n
k

)−2
n−1. To prove this result, we rely on the following two observations.

Observation 1. With probability at least 1 − o
((

n
k

)−2
n−1
)
, there are at most

(
n
k

)
n2 stable

matchings in the market induced by agents F̄ and W̄ .
Let Nk denote the corresponding number of stable matchings. The observation follows
immediately from one-sided Chebyshev’s inequality, where λ > 0,

Pr(X ≥ EX + λ) ≤ VarX

VarX + λ2 ,
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and the following two asymptotic results, obtained in Pittel (1989) and Lennon and Pittel
(2009), respectively:

E[Nk] = (1 + o(1))e−1k ln k,

E[N 2
k ] = (1 + o(1))

(
e−2 +

1

2
e−3

)
k2 ln2 k, k → ∞.

Observation 2. With probability at least 1 − o
((

n
k

)−2
n−1
)
, there are fewer than 0.8n pairs

of fi ∈ F̄ , wj ∈ W̄ , where i, j ∈ [k], such that

U f
ij > 1− 1

3
√
n

and Uw
ij > 1− 1

3
√
n
.

Let Z be the number of such pairs. In total, there are k2 possible pairs fi ∈ F̄ , wj ∈ W̄ .
Each pair satisfies the above conditions with probability 1/9n. Thus, by the linearity of
expectations, E[Z] = k2/9n. In addition, 9n/100 ≤ E[Z] < n/9 since 0.9n ≤ k < n. Using
the multiplicative Chernoff bound, with γ > 0,

Pr
[
X ≥ (1 + γ)E[X]

]
≤
[

eγ

(1 + γ)(1+γ)

]E[X]

,

we obtain, say,

Pr[Z ≥ 0.79n] ≤ Pr [Z ≥ (1 + γ)E[Z]]
∣∣∣
γ=6

≤
[
e6

77

]E[Z]

≤
[
e6

77

]9n/100
≤ 1.98−n.

In contrast, for 0.9n ≤ k < n, using the Stirling approximation, we have

ln

((
n

k

)2

n

)
≤ ln

((
n

⌊0.9n⌋

)2

n

)
= 2 ln

(
n

⌊0.9n⌋

)
+ lnn = (1 + o(1))2H(0.9)n+ lnn,

where H(p) ≡ −p ln p− (1− p) ln(1− p). The observation then follows since e2H(0.9) < 1.93.

Based on these two observations, with a failure probability of at most o
((

n
k

)−2
n−1
)
, the

corresponding properties regarding Nk and Z are both satisfied. Fix any stable matching
µ̄ in the market formed by agents F̄ and W̄ ; by Observation 1, there are at most

(
n
k

)
n2

such matchings. Due to Observation 2, as 0.9n ≤ k < n, this matching contains at least
k − 0.8n ≥ 0.1n pairs of fi ∈ F̄ , wj ∈ W̄ , with µ̄(fi) = wj, such that

U f
ij ≤ 1− 1

3
√
n

or Uw
ij ≤ 1− 1

3
√
n
.

If µ̄ induces the fragment (F̄ , W̄ ), then every agent inside the fragment must prefer her
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partner under µ̄ to anyone outside the fragment. The corresponding probability is at most(
1− 1

3
√
n

)0.1n(n−k)

= e−
√
n(n−k)/30, n → ∞.

Even after multiplying this probability by at most
(
n
k

)
n2 possibilities to pick µ̄, it still remains

o
((

n
k

)−2
n−1
)
. This concludes the proof.

Proposition 2 highlights the rarity of large fragments, whether trivial or non-trivial, in
random markets. We believe that similar arguments may be used to sharpen the result and
show that even (much) smaller fragments are also vanishingly rare.

There are also other tools that can be relevant for examining fragments in random mar-
kets. Below, we describe an approach that may be used to obtain integral formulas for certain
probabilities, which could be of interest and possibly amenable to an asymptotic analysis.
This approach, originating from Knuth (1976) and Pittel (1989), has proved to be useful for
analyzing random matching markets; see Pittel (2019) for additional details.

For illustration, consider arbitrary subsets F̄ and W̄ of firms F and workers W , re-
spectively, each of size k < n, and an arbitrary matching µ̄ in the market formed by these
subsets. Let Pk(n) denote the probability that µ̄ induces the fragment (F̄ , W̄ ); by symmetry,
this probability depends only on sizes k and n. Then,

Lemma 7. We have

Pk(n) =

2k times︷ ︸︸ ︷∫
. . .

∫
x,y∈[0,1]k

∏
i,j∈[k],i ̸=j

(1− xiyj)
∏
h∈[k]

(1− xh)
n−k

∏
l∈[k]

(1− yl)
n−kdxdy,

where x = (x1, x2, . . . , xk) and y = (y1, y2, . . . , yk).

Proof. As in the proof of Proposition 2, we employ a cardinal representation of random
markets. Let U f = {U f

ij}i,j∈[n] and Uw = {Uw
ij}i,j∈[n] be the match utilities for firms {fi}i∈[n]

and workers {wj}j∈[n], respectively, with all entries selected randomly and independently
from the uniform distribution U [0, 1].

Due to symmetry, it suffices to consider F̄ = {fi}i∈[k] and W̄ = {wj}j∈[k] and the matching
µ̄ such that µ̄(fi) = wi for each i ∈ [k]. By definition, µ̄ induces the fragment (F̄ , W̄ ) if and
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only if

U f
ii > U f

ij or Uw
jj > Uw

ij ∀i, j ∈ [k], i ̸= j

U f
ii > U f

ij ∀i ∈ [k], j > k,

Uw
jj > Uw

ij ∀j ∈ [k], i > k.

Notably, conditioned on U f
ii = uf

i and Uw
jj = uw

j , with i, j ∈ [k], the above events are
independent. Consequently, the conditional probability that µ̄ induces the fragment (F̄ , W̄ )

equals ∏
i,j∈[k],i ̸=j

(
1− (1− uf

i )(1− uw
j )
) ∏

h∈[k]

(
uf
h

)n−k ∏
l∈[k]

(
uw
l

)n−k

.

By integrating this expression over the cube [0, 1]2k and switching to new variables xi = 1−uf
i

and yj = 1− uw
j , i, j ∈ [k], we obtain the desired integral formula for Pk(n).

The obtained integral formula shares some similarities with those recently analyzed in
Pittel (2019). This serves as a promising sign that the described approach may be valuable
for analyzing fragments in random markets.

Although large fragments, whether trivial or not, are vanishingly rare, non-triviality
appears to play a central role in the rarity of (very) small non-trivial fragments, as suggested
by Figure 1 in the main text. Since each firm-worker pair forms a top-top match with
probability n−2, and there are n2 such pairs, top-top match pairs are common in random
markets. In fact, it is easy to show that the number of top-top match pairs is asymptotically
Poisson with parameter 1. Given that top-top match pairs and their sequences are trivial
fragments, this suggests that small trivial fragments are quite common.

In contrast, consider two firms and two workers forming a non-trivial fragment of size
k = 2, the smallest possible size of a non-trivial fragment. There are roughly n4 ways to
choose such agents and 2 ways to pick a stable matching for them, which can induce the
fragment. These agents prefer their stable partners to everyone outside the fragment with
a probability of roughly n−4, already matching the number of ways to choose these agents.
Non-triviality additionally requires that there is no other stable way to match these agents
in the entire market. This additional requirement imposed by non-triviality seems to be the
primary reason for the rarity of small non-trivial fragments in random markets.
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E. Other Dynamics

In this section, we explore additional classes of reasonable dynamics beyond those discussed
in the paper. However, none of these new dynamics even ensure convergence to stability,
which is arguably a minimal requirement for viable dynamics.

Proposition 3. Consider a class of dynamics that, at each step, whenever possible, match
multiple (best) blocking pairs.2 No dynamics in this class guarantee convergence to stability.

Proof. Initialize the following market


w1 w2 w3

f1 3, 1 2, 2 1, 3

f2 1, 3 3, 1 2, 2

f3 2, 2 1, 3 3, 1


at matching λ1 = (w1, f3, f2), specifying the partners of workers w1, w2, and w3, respectively.

It is easy to verify that every given dynamics generate a cycle, and thus fail to attain
stability. For illustration, in the first step, there are three (best) blocking pairs: (f1, w1),
(f1, w3), and (f3, w1). Consequently, the dynamics necessarily match pairs (f1, w3) and
(f3, w1), leading the market to λ2 = (f3, w2, f1):

λ1 −−−−−−−−→
(f1,w3),(f3,w1)

λ2,

where, under the transition arrow, we specify the corresponding blocking pairs.
In fact, the dynamics must follow the deterministic path

λ1 −−−−−−−−→
(f1,w3),(f3,w1)

λ2 −−−−−−−−→
(f1,w2),(f2,w1)

λ3 = (f2, f1, w3) −−−−−−−−→
(f2,w3),(f3,w2)

λ4 = λ1,

returning to the initial matching λ1.

In addition,

2Formally, at each step i, if the current matching λi is unstable, we tabulate the set of all combinations of
(best) blocking pairs, consisting of at least two pairs, that can match simultaneously. If such combinations
exist, we choose one of them randomly, and the next matching, λi+1, is obtained by matching all blocking
pairs in the chosen combination. Otherwise, if no such combination exists, λi+1 is obtained by satisfying
a randomly-chosen (best) blocking pair. Notably, the discussed probabilities can be arbitrary, potentially
non-uniform, time-dependent, or even zero.
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Proposition 4. Consider a class of dynamics that, at each step, whenever possible, match a
firm-worker pair that are each other’s favorite blocking partner.3 No dynamics in this class
guarantee convergence to stability.

Proof. Initialize the market



w1 w2 w3 w4 w5

f1 1, 3 3, 1 5, 4 2, 5 4, 1

f2 1, 4 2, 5 3, 3 5, 3 4, 4

f3 3, 1 2, 4 4, 2 1, 4 5, 3

f4 4, 2 2, 3 3, 5 1, 1 5, 2

f5 2, 5 4, 2 5, 1 3, 2 1, 5


at matching λ1 = (f5, w2, f4, f2, f3), specifying the partners of workers w1, w2, and so on.

Then, every given dynamics generate a cycle, and hence fail to reach stability. Initially,
there are three blocking pairs: (f1, w2), (f1, w4), and (f5, w2). In addition, (f5, w2) is the
only pair of agents that are each other’s favorite blocking partner. Therefore, the dynamics
must match firm f5 and worker w2, leading the market to λ2 = (w1, f5, f4, f2, f3):

λ1 −−−−→
(f5,w2)

λ2,

where under the transition arrow, we specify the satisfied blocking pair.
It is straightforward to check that the dynamics necessarily follow the path

λ1 −−−−→
(f5,w2)

λ2 −−−−→
(f1,w4)

λ3 −−−−→
(f2,w5)

λ4 −−−−→
(f4,w1)

λ5 −−−−→
(f1,w3)

λ6 −−−−→
(f3,w2)

λ7 −−−−→
(f2,w4)

λ8 −−−−→
(f5,w1)

−−−−→
(f5,w1)

λ9 −−−−→
(f3,w5)

λ10 −−−−→
(f4,w3)

λ11 = λ1,

returning to the initial matching λ1.

In what follows, we focus on cardinal markets, with match utilities denoted as U =

{uf
ij, u

w
ij}i,j∈[n]. For each pair (fi, wj), uf

ij is firm fi’s utility from matching with worker
wj and uw

ij is worker wj’s utility from matching with firm fi. The sum of these utilities,
uf
ij + uw

ij, is the total surplus. Without loss of generality, all utilities from being unmatched
are normalized to zero. As in the main paper, all preferences are strict, and all worker-firm
pairs are mutually acceptable, i.e., uf

ij > 0 and uw
ij > 0 for all i, j. Then,

3Specifically, at each step i, if the current matching λi is unstable, we tabulate the set of blocking pairs
of agents that are each other’s favorite blocking partner. If such blocking pairs exist, we choose one of them
randomly, and the next matching, λi+1, is obtained by satisfying the chosen pair. Otherwise, if no such
pair exists, λi+1 is obtained by satisfying a randomly-chosen blocking pair, as usual. The probability that a
specific blocking pair is selected to match can be arbitrary.
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Proposition 5. Consider a class of dynamics that, at each step, match a blocking pair having
the highest total surplus.4 No dynamics in this class guarantee convergence to stability.

Proof. Initialize the cardinal market



w1 w2 w3 w4

f1 11, 1 9, 7 8, 3 6, 5

f2 4, 4 3, 6 2, 8 9, 3

f3 1, 8 2, 5 8, 5 3, 9

f4 4, 3 6, 8 9, 1 7, 4


at matching λ1 = (w1, f4, f3, f2), which specify the partners of workers w1, w2, and so forth.

The dynamics generate a cycle, and thus fail to attain stability. In the first step, there
are three blocking pairs: (f1, w1) with a total surplus of 12 = 11 + 1, (f1, w4) with a total
surplus of 11 = 6 + 5, and (f4, w4) with a total surplus of 11 = 7 + 4. Consequently, the
dynamics match firm f1 and worker w1 and lead the market to λ2 = (f1, f4, f3, f2):

λ1 −−−−→
(f1,w1)

λ2.

The dynamics then follow the path

λ1 −−−−→
(f1,w1)

λ2 −−−−→
(f4,w4)

λ3 −−−−→
(f2,w3)

λ4 −−−−→
(f3,w4)

λ5 −−−−→
(f4,w2)

λ6 −−−−→
(f2,w1)

λ7 −−−−→
(f3,w3)

λ8 −−−−→
(f2,w4)

λ9 = λ1,

eventually returning to the initial matching λ1.

Obviously, the same result can be obtained for dynamics that, at each step, match a
blocking pair having the highest weighted total surplus; this can be achieved by appropriately
scaling the match utilities used in the proof of the above proposition. We also expect similar
results for other related dynamics; particularly, for dynamics that, at each step, match a
blocking pair having the highest total surplus gain, compared to the previous match.

4These dynamics are deterministic at all steps when there is one blocking pair that delivers the highest
total surplus. If, at some step, there are multiple such pairs, we choose one of them randomly, and the next
matching is obtained by satisfying the chosen pair.
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F. Fragility Examples

Example 5. The example presents a market in which one of the two stable matchings is
fragile with respect to arbitrary perturbations.

Consider the following market with six firms and six workers:



w1 w2 w3 w4 w5 w6

f1 6, 2 4, 5 3, 1 2, 6 5, 2 1, 6

f2 3, 6 5, 1 2, 4 6, 3 4, 6 1, 5

f3 5, 5 3, 3 6, 2 4, 1 2, 4 1, 3

f4 1, 1 4, 2 5, 3 6, 4 3, 1 2, 2

f5 3, 4 2, 6 1, 6 5, 2 6, 3 4, 4

f6 1, 3 2, 4 3, 5 5, 5 4, 5 6, 1


.

There are two stable matchings:

µF = (f1, f2, f3, f4, f5, f6) and µW = (f3, f1, f4, f6, f2, f5).

Furthermore, each agent has two different stable partners.
By using the Markov structure of the problem with states being matchings, we calculate

return probabilities

stable \ unmatch w1 w2 w3 w4 w5 w6

µF = (f1, f2, f3, f4, f5, f6) 0.3108 0.2657 0.2706 0.2769 0.2689 0.2362
µW = (f3, f1, f4, f6, f2, f5) 0.9883 0.9810 0.9886 0.9825 0.9801 0.9819

for each almost stable matching, obtained by unmatching worker wi with his stable partner.
These return probabilities imply that the firm-optimal stable matching µF is fragile with

respect to arbitrary perturbations. Indeed, each of its almost stable matchings is more likely
to converge to the worker-optimal stable matching µW . In fact, irrespective of how close
we start to µF , in order to return back, decentralized interactions need to attain one of its
almost stable matchings, and thus are more likely to attain µW instead. In that sense, almost
stable matchings corresponding to minimal perturbations provide lower bounds on fragility.

In contrast, the worker-optimal stable matching µW seems robust. Even though, when
perturbed minimally, it can still converge to µF , this is very unlikely. Interestingly, robust
stable matching µW is more egalitarian than fragile stable matching µF .5 △

5In our simulations, more egalitarian stable matchings seem to be more robust on average. Nevertheless,
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Example 6. The example presents a market in which all stable matchings are fragile and
extremal stable matchings are most fragile.

Consider the following market with six firms and six workers:



w1 w2 w3 w4 w5 w6

f1 6, 1 5, 2 4, 3 3, 4 2, 5 1, 6

f2 1, 6 6, 1 5, 2 4, 3 3, 4 2, 5

f3 2, 5 1, 6 6, 1 5, 2 4, 3 3, 4

f4 3, 4 2, 5 1, 6 6, 1 5, 2 4, 3

f5 4, 3 3, 4 2, 5 1, 6 6, 1 5, 2

f6 5, 2 4, 3 3, 4 2, 5 1, 6 6, 1


.

It has six stable matchings:

µ1 = µF = (f1, f2, f3, f4, f5, f6),

µ2 = (f6, f1, f2, f3, f4, f5),

µ3 = (f5, f6, f1, f2, f3, f4),

µ4 = (f4, f5, f6, f1, f2, f3),

µ5 = (f3, f4, f5, f6, f1, f2),

µ6 = µW = (f2, f3, f4, f5, f6, f1).

Each stable matching corresponds to one of the six “diagonals” in the matrix.
By using the Markov structure, we compute exact values for return probabilities

stable \ unmatch wi, any i

µF = (f1, f2, f3, f4, f5, f6) 0.2010
µ2 = (f6, f1, f2, f3, f4, f5) 0.3165
µ3 = (f5, f6, f1, f2, f3, f4) 0.5035
µ4 = (f4, f5, f6, f1, f2, f3) 0.5035
µ5 = (f3, f4, f5, f6, f1, f2) 0.3165
µW = (f2, f3, f4, f5, f6, f1) 0.2010

for each almost stable matching. In fact, due to symmetry, it suffices to calculate only three
return probabilities.

In this market, every stable matching appears to be fragile. Notably, extremal stable
matchings are most fragile. Conversely, more egalitarian stable matchings are less fragile;
this observation is similar to Example 5. △

in certain markets, the most egalitarian stable matching may not necessarily be the most robust one; see
Boudreau (2011) for a slightly related observation.
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