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Introduction

Communication or intermediation

• precede many interactions: voting, matching, product adoption, etc.

• a possible channel for collusion by auction bidders, market competitors, and
the like

Broad question: What strategic interactions are susceptible to communication
influences or collusion?



Refined Introduction

Correlated equilibria (Aumann, 1974) generalize Nash equilibria to allow
correlation

• Can be implemented via communication, as well as mediation or joint
randomization

• Capture outcomes of arbitrary communication protocols without explicitly
modeling the communication phase

This project: When is there potential value in correlation?
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Games on a Shoestring

Normal-form game

Γ =
(
N, (Ai)i∈N , (ui : A → R)i∈N

)

• N = {1, . . . ,n} is finite set of players
• Ai is a finite set of actions of player i
• A =

∏
i∈N Ai is the set of action profiles

• ui : A → R is utility of player i



Correlated Equilibria (CE)

Definition
A distribution µ ∈ ∆(A) is a correlated equilibrium if∑

a−i∈A−i

µ(ai ,a−i)ui(ai ,a−i) ≥
∑

a−i∈A−i

µ(ai ,a−i)ui(a′
i ,a−i)

for all i ∈ N and all ai ,a′
i ∈ Ai

Interpretation: µ generated by a mediator and players best respond by adhering
Remark: Nash Equilibria (NE) are CE of the form µ = µ1 × . . .× µn



Approach

• The set of correlated equilibria is a convex polytope
• A polytope is a convex hull of its vertices, aka extreme points

Definition
A Nash equilibrium is extreme if it is an extreme point of the set of CE

Our Question: When is a Nash equilibrium extreme?
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Improvability of non-extreme equilibria

Maximization of a linear objective—e.g., utilitarian welfare—over a polytope P:

Objective
Objective

Two cases:
• If the optimum is unique, it is an extreme point

• We call objectives with a unique optimum non-degenerate
• Utilitarian welfare is non-degenerate, as we will see

• In knife-edge cases, the whole face of P can be optimal

Observation
NE is non-extreme ⇐⇒ any non-degenerate linear objective can be improved

Remark: linear in probabilities, not in actions ⇒ a broad class of objectives
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Improvability of non-extreme equilibria 2

Bauer’s Maximum Principle
Any non-degenerate linear or (quasi-)convex objective attains its maximum at an
extreme point

• ⇒ Non-extreme equilibria are improvable no matter the objective

• A conservative notion, agnostic to the designer’s objective
• Usually, assess outcomes for a given objective

Main Insight
Despite restrictiveness of improvability notion, many equilibria are improvable,
i.e., non-extreme
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Outline

• Part 1
• Conditions for extremality/improvability
• Translation to payoffs
• Applications

• Part 2
• Proof idea
• Simple description of extreme CE



Conditions for Extremality



Extremality of Nash Equilibria

Theorem 1
In a generic n-player game, a mixed NE is extreme ⇐⇒ ≤ 2 players randomize

Complete detail-free characterization of extreme Nash equilibria

• Pure equilibria are extreme (trivial)
• Equilibria with exactly 2 randomizing players are extreme

(Cripps, 1995; Evangelista and Raghavan, 1996; Canovas et al., 1999)
• If 3 or more players randomize, any non-degenerate objective can be

improved, either by introducing correlation, or by reducing randomness
⇒ 2-player games not representative
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Non-generic Games

Genericity can be dropped in any game, by considering regular NE only

Definition (informal): a NE is regular if it is stable under small payoff perturbations

Theorem 1’
In any game, a regular mixed NE is extreme ⇐⇒ ≤ 2 players randomize

• In a generic game, any NE is regular (Harsanyi, 1973)
• Hence, Theorem 1’ ⇒ Theorem 1
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Example: 2 Players vs 3 Players



Example: 2-Player Games

A version of the Game of Chicken by Aumann (1974):

1
2

Risky

Safe

Risky Safe

6, 6 10, 7

7, 10 9, 9



Example: 2-Player Games
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Safe
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p 1− p

• Mixed NE: (1/2, 1/2) for both players
Solves linear equation: 6p + 10(1− p) = 7p + 9(1− p) =⇒ p = 1/2

• Aumann (1974): CE can increase utilitarian welfare by shifting weight from (6,6)
• However, the mixed NE is an extreme point

• Indeed, it is the optimum for a non-degenerate objective

weight of (Risky, Risky) & (Safe, Safe) → max
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Example: 3-Player Games

1
2

3

Risky

Safe

Risky Safe

6, 6, 5 10, 7, 7

7, 10, 7 9, 9, 9

Risky Safe

0, 0, 0 6, 5, 6

5, 6, 6 7, 7, 10

Safe Risky

p 1− p

p

1− p

• Symmetric Mixed NE: (√3/2− 1, 2−
√3/2) for each player

• Non-linear equation in p ⇒ irrational weights (Nash, 1950)
• However, extreme CE solve a linear system ⇒ have rational coordinates
• The mixed NE is not extreme

More than 2 players mixing makes a difference...
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Extreme Points in Payoff Space



Payoff-extreme Equilibria

• The set of CE ⊂ ∆(A) subset of a space of dimension |A1| · . . . · |An|
• Equilibria are often represented via payoffs in Rn

Definition
A Nash equilibrium is payoff-extreme if its payoff vector is an extreme point of the
set of CE payoffs

Question: What can we say about payoff-extreme equilibria?
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Observations:

• CE payoffs = projection of CE to a lower-dimensional space
• Extreme points of a projection ⊂ projection of extreme points

Corollary
In a generic game, a Nash equilibrium with ≥ 3 players randomizing is not
payoff-extreme

• Projection of an extreme point need not be an extreme point of a projection
• ⇒ pure NE and NE with 2 mixers need not be payoff-extreme

• e.g, the mixed NE in the Game of Chicken
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Payoff-extreme Equilibria

• NE is not payoff-extreme ⇒ any non-degenerate linear objective in the space
of payoffs can be improved

• Linear objective in payoffs = weighted welfare

W (µ) =
∑
i∈N

αi
∑
s∈S

ui(s)µ(s) → max

• The case α1 = . . . = αn = 1 corresponds to the utilitarian welfare
• Non-degeneracy means unique optimum

Proposition
In a generic game, utilitarian welfare is non-degenerate
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Applications to Particular
Classes of Games



Costly Voting

Costly voting model of Palfrey and Rosenthal (1983):

• Two finite groups of voters: D and R, |R| > |D|
• Voters in D get utility of 1 if d-candidate wins and 0 otherwise
• Voters in R get utility of 1 if r-candidate wins and 0 otherwise
• Majority voting (among those who participate), ties broken randomly
• Costly participation: c > 0

Palfrey and Rosenthal (1983): For intermediate values of c, all equilibria involve at
least one group all mixing

• ⇒ These equilibria are not extreme

Other Applications: games where players want to mismatch actions of others

• e.g., network games (with substitutes), congestion games, all-pay auctions,
Boston matching mechanism
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Symmetric Games

• In many applications, strategic interactions are symmetric
• When are symmetric equilibria extreme?

Theorem 2
In any symmetric game with n ≥ 3 players, a completely mixed symmetric NE is
not extreme in the (smaller!) set of symmetric CE

• No genericity or regularity assumptions
• Any pure strategy must be played with a positive probability

Take-away: caution when focusing on symmetric mixed equilibria in symmetric
games
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How to Prove Theorem 1



Proof Idea

Theorem 1’
In any game, a regular mixed NE is extreme ⇐⇒ ≤ 2 players randomize

• We’ve seen intuition based on the possibility of having irrational NE for n ≥ 3
mixers

• This is not how the actual proof goes since not all NE with n = 3 mixers are
irrational

Idea: When many players randomize, there are too many ways to correlate their
actions, one must be beneficial

Focus on a particular example to illustrate
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How the Proof Goes: Example

• Game with n players, each with 2 actions

• If µ is a CE, must satisfy incentive constraints∑
a−i∈A−i

µ(ai ,a−i)ui(ai ,a−i) ≥
∑

a−i∈A−i

µ(ai ,a−i)ui(a′
i ,a−i)

• 2n constraints
• Winkler (1988): if k linear constraints are imposed on the set of all

distributions ∆(A), extreme distributions have support ≤ k + 1
• ⇒ support of an extreme CE µ is bounded by 2n+ 1
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How the Proof Goes: Example

• Suppose ν is a Nash equilibrium with the k players mixing

• The support of ν contains 2k action profiles
• ⇒ For ν to be extreme,

2k ≤ 2n+ 1

• We can replace 2n+1 with 2k +1 by eliminating non-randomizing agents. Thus

2k ≤ 2k + 1

Conclusion: NE with k ≥ 3 mixing agents cannot be extreme

• The same argument applies to equilibria, where players mix over the same
number of pure strategies

• The main difficulty is handling very asymmetric equilibria
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Key Lemmas for the General Proof

Support Size of Extreme Correlated Equilibria (follows from Winkler (1988))
If µ is an extreme correlated equilibrium, then

supp(µ) ≤ 1+
∑
i∈N

|Ai | · (|Ai | − 1)

Support Size of Regular Nash Equilibria (McKelvey and McLennan, 1997)
For a regular Nash equilibrium, ν = (ν1, ν2, . . . , νn):

supp(νi)− 1 ≤
∑
j ̸=i

(supp(νj)− 1), for any player i

Let’s combine these two observations



Key Lemmas for the General Proof

Support Size of Extreme Correlated Equilibria (follows from Winkler (1988))
If µ is an extreme correlated equilibrium, then

supp(µ) ≤ 1+
∑
i∈N

|Ai | · (|Ai | − 1)

Support Size of Regular Nash Equilibria (McKelvey and McLennan, 1997)
For a regular Nash equilibrium, ν = (ν1, ν2, . . . , νn):

supp(νi)− 1 ≤
∑
j ̸=i

(supp(νj)− 1), for any player i

Let’s combine these two observations



How the Proof Goes

Consider a game Γ = (A,u) and a non-pure extreme regular Nash equilibrium ν

• Since ν is regular, incentive constraints outside of supp(ν) are inactive
• ⇒ pure strategies outside supp(ν) and non-mixing players are irrelevant
• ⇒ w.l.o.g., ν is fully mixed and all |Ai | ≥ 2

By the lemmas from the previous slide:

n∏
i=1

|Ai | ≤ 1+
∑
i∈N

|Ai | · (|Ai | − 1) ⇐= the bound on the support of extreme CE

|Ai | − 1 ≤
∑
j ̸=i

(|Aj | − 1), ∀i ⇐= McKelvey and McLennan (1997)

Proposition
These inequalities can only hold for some integral |Ai | ≥ 2, i = 1 . . . ,n, if n ≤ 2

• ⇒ ν with n ≥ 3 mixers cannot be extreme
• The proposition is proved via majorization & Schur convexity
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What Extreme CE Look Like

For a non-extreme NE, any non-degenerate objective can be strictly improved by
switching to an extreme CE
Question: What is the structure of extreme CE?

• For general games, we only know that extreme CE have small support
• For symmetric games and symmetric CE, we can say more
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Symmetric CE and Exchangability

Observation:

• For a symmetric CE, the random variables a1, . . . ,an are exchangeable

• If n → ∞, the structure of exchangeable distributions is well-known

Theorem (de Finetti)
Any infinite exchangeable sequence a1,a2,a3 . . . is a mixture of i.i.d. distributions
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Extreme Symmetric CE with Many Players

• Consider a symmetric game with m actions per player
• Assume the number of players n is large

Proposition 2
Any extreme symmetric CE can be approximated by a mixture of m(m− 1) + 1
i.i.d. distributions

• For m = 2, a mixture of 3 i.i.d. distributions ⇒ 5-parameter family of extreme CE
• A radical dimension reduction

Question: What if we want the exact result, not an approximation?

• A version of Proposition 2 holds: sampling without replacement instead of i.i.d.

details
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Conclusions

Several papers effectively show extremality of NE in specific contexts:
• Tullock contests, Cournot and Bertrand, patent races, location games (Einy,

Haimanko, and Lagziel, 2022)
• First-price auctions (Feldman, Lucier, and Nisan, 2016)
• Convex potential games (Neyman, 1997; Ui, 2008)
• Two-player normal-form games (Cripps, 1995; Evangelista and Raghavan,

1996; Canovas et al., 1999)

Our paper:
• a tension between equilibrium randomness and extremality
• detail-free criterion for extremality in various settings

Ongoing:
• Incomplete information
• “Correlated implementation” in mechanism design

Thank you!
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General linear objectives

• Consider a NE ν

• For simplicity, ν has full support
• By Farkas lemma, a linear objective L can be improved for ν ⇐⇒ L cannot be

expressed as

L(µ) = C +
∑

i,ai ,a′
i ,a−i

µ(a) · λi(ai ,a′
i ) ·

(
ui(ai ,a−i)− ui(a′

i ,a−i)
)

for some λi(ai ,a′
i ) ≥ 0.

• For non-extreme NE ν, “bad” L form a lower-dimensional subspace
back



Extreme Symmetric CE with Any Number of Players

Consider n players with m actions each
Proposition
Any extreme symmetric CE can be obtained as follows:

• there are M urns, each with n balls labeled by actions

1 ≤ M ≤ m(m− 1) + 1

• an urn is selected at random according to p ∈ ∆M , secretly from players
• players draw balls sequentially without replacement
• i’s action = her ball’s label, no incentive to deviate

Remark: If n is large, sampling without replacement can be approximated by i.i.d.

back
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Bayesian Games

Bayesian game

B =
(
N, (Ai)i∈N , (Ti)i∈N , τ ∈ ∆(T ), (ui : A× Ti → R)i∈N

)

• Each player i ∈ N has a type ti ∈ Ti
• Profile of types (t1, . . . , tn) ∈ T sampled from τ

• Each player i observes her realized type
• Utility ui : A× Ti → R depends on the action profile and i’s type

Technical assumption: sets of types Ti are finite



Bayesian Correlated Equilibria (BCE)

Definition
A joint distribution µ ∈ ∆(A× T ) is a Bayesian correlated equilibrium if

• The marginal on T coincides with τ

• For each player i, type ti , recommended action ai , and deviation a′
i ,∑

(a−i ,t−i)

µ
(
(ai , ti), (a−i , t−i)

)
ui(ai , ti ,a−i) ≥

∑
(a−i ,t−i)

µ
(
(ai , ti), (a−i , t−i)

)
ui(a′

i , ti ,a−i)

Interpretation: a mediator having access to realized types recommends actions to
each player. Two aspects:

1. Ex-ante coordination: a source of correlated randomness (as in CE)
2. Information sharing: providing i more info about t−i than contained in ti

Remark: Bergemann and Morris (2016) allow for a broader class of BCE, where
player i observes a noisy signal about her type



Induced Complete Information Game

We can associate a complete information normal form game ΓB with B:

• Replace Ai with set of functions σi : Ti → Ai

• Σi is the set of all such σi

• Utility vi : Σ → R is given by

vi(σ) =
∑
t∈T

τ(t) · ui
(
(σ1(t1), . . . , σn(tn)), ti

)
Induced Complete Information Game

ΓB =
(
N, (Σi)i∈N , (vi)i∈N

)

Question: What is a relation between CE of ΓB and BCE of B?



Induced complete information game
Relationship between equilibria in ΓB and B
CE in ΓB ⇔ ex-ante coordination in B with no information sharing

• i.e., BCE such that ai is independent of t−i conditionally on ti

Nash in ΓB ⇔ Bayes-Nash in B

Observation: Generic B leads to generic ΓB

• ⇒ we can apply our theorem to ΓB to learn about generic B

Corollary
For a generic Bayesian game, a Bayes-Nash equilibrium is improvable via ex-ante
coordination ⇐⇒ at least 3 players randomize

Applies to Bayesian games where players randomize in equilibrium, e.g., costly
voting with private types (Feddersen and Pesendorfer, 1997) and contests
(Baranski and Goel, 2024)
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